Cantor sets in S3 with simply connected complements

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smooth Surfaces with Non-simply-connected Complements

We give two constructions of surfaces in simply-connected 4-manifolds with non simply-connected complements. One is an iteration of the twisted rim surgery introduced by the first author [7]. We also construct, for any group G satisfying some simple conditions, a simply-connected symplectic manifold containing a symplectic surface whose complement has fundamental group G. In each case, we produ...

متن کامل

ALGEBRAS WITH CYCLE-FINITE STRONGLY SIMPLY CONNECTED GALOIS COVERINGS

Let $A$ be a nite dimensional $k-$algebra and $R$ be a locally bounded category such that $R rightarrow R/G = A$ is a Galois covering dened by the action of a torsion-free group of automorphisms of $R$. Following [30], we provide criteria on the convex subcategories of a strongly simply connected category R in order to be a cycle- nite category and describe the module category of $A$. We p...

متن کامل

Cantor sets

This paper deals with questions of how many compact subsets of certain kinds it takes to cover the space ω of irrationals, or certain of its subspaces. In particular, given f ∈ (ω\{0}), we consider compact sets of the form Q i∈ω Bi, where |Bi| = f(i) for all, or for infinitely many, i. We also consider “n-splitting” compact sets, i.e., compact sets K such that for any f ∈ K and i ∈ ω, |{g(i) : ...

متن کامل

Critical graphs with connected complements

We show that given any vertex x of a k-colour-critical graph G with a connected complement, the graph G − x can be (k − 1)-coloured so that every colour class contains at least 2 vertices. This extends the well-known theorem of Gallai, that a k-colour-critical graph with a connected complement has at least 2k − 1 vertices. Our proof does not use matching theory. It is considerably shorter, conc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 1986

ISSN: 0166-8641

DOI: 10.1016/0166-8641(86)90060-x